Monitoring Report MY06

Cedar Branch Restoration Site Monitoring Year 06 DMS Contract 6598 DMS Project Number 97009 RFP# 16-006313 Yadkin River Basin - 03040103

DWR #: 20150904 USACE Action ID: 2003-21395 Randolph County, North Carolina

Prepared for: NCDMS, 1652 Mail Service Center, Raleigh, NC 27699-1652

> Monitoring Data Collected: 2023 Date Submitted: December 2023

Monitoring and Design Firm

KCI Associates of North Carolina 4505 Falls of Neuse Road Suite 400 Raleigh, NC 27609 (919) 783-9214

Project Contact: Adam Spiller Email: <u>adam.spiller@kci.com</u>

ENGINEERS • SCIENTISTS • SURVEYORS • CONSTRUCTION MANAGERS 4505 Falls of Neuse Road Suite 400 Raleigh, NC 27609 (919) 783-9214 (919) 783-9266 Fax

MEMORANDUM

Date:	February 20, 2024
То:	Matthew Reid, DMS Project Manager
From:	Adam Spiller, Project Manager KCI Associates of North Carolina, PA
Subject:	Cedar Branch Stream Restoration Site MY-06 Monitoring Report Comments Yadkin River Basin CU 03040103 Randolph County, North Carolina NCDMS Project # 97009 Contract # 006598

Please find below our responses in italics to the MY-06 Monitoring Report comments from NCDMS received on January 16, 2024, for the Cedar Branch Stream Restoration Site.

Please ensure the Monitoring Performance Bond has been received and approved by Kristie Corson prior to invoicing.

▶ KCI will ensure that this is done prior to invoicing.

Please include the following information on the cover page:

- o RFP# 16-006313 (date of issue: January 21, 2015)
- o Yadkin River Basin 03040103
- This change has been made.

Vegetation Monitoring: No vegetation data was collected since this is MY6. Recommend adding a statement that previous year's data is included in Appendix C.

This change has been made.

Monitoring Results: On June 2, 2023, DMS completed a boundary inspection to verify the integrity of the conservation easement and identify any potential issues on the site. Three action items were identified, and KCI has resolved the issues. Please include this information in the report when discussing the trash removal and fence repair in the first paragraph of the section. *This change has been made.*

Please include the Boundary Inspection Report in the appendix and reference in the report when discussing the inspection.

> This change has been made.

Rainfall discussion: Please include the historic average rainfall amount vs. the observed total when discussing below average rainfall for the year.

The rainfall discussion should have indicated that the area experienced average rainfall during 2023. This error has been corrected and the appropriate rainfall totals have been added to the report.

Recommend including previous year's cross-section graphs and adding a statement that crosssection data was not collected in MY6, but previous data is included in Appendix D in the Monitoring Results section.

> This change has been made.

The stream gauge on UTCC malfunctioned and did not provide accurate data in 2023. Has the gauge been repaired or replaced? Please update report.

The stream gauge will be replaced before the start of the 2024 growing season. A note indicating this has been added to the report.

Sincerely,

Alan Sille

Adam Spiller Project Manager

TABLE OF CONTENTS

Project Summary	.1
Monitoring Results	
Figure 1. Project Site Vicinity Map	
References	

Appendix A – Background Tables

Table 1. Project Components and Mitigation Credits	.7
Table 2. Project Activity and Reporting History	
Table 3. Project Contacts	. 9
Table 4. Project Information	10

Appendix B – Visual Assessment Data

CCPV	12
Table 5. Visual Stream Morphology Assessment	
Table 6. Vegetation Condition Assessment	
Photo Reference Points	

<u>Appendix C – Vegetation Plot Data</u>

Table 7. Stem Count Total and Planted by Plot and Species 25

Appendix D – Stream Measurement and Geomorphology Data

Table 8. Baseline Stream Data Summary	. 27
Table 9. Cross-section Morphology Data Table	
Cros-section Plots	

<u>Appendix E – Hydrologic Data</u>

30-70 Percentile Graph	51
Table 10. Verification of Bankfull Events	
Table 11. Verification of Stream Flow	52
Table 12. Stream Flow Criteria Attainment	52
Stream Flow Verification and Precipitation Plots	53
Table 13. Wetland Hydrology Verification	56
Groundwater and Precipitation Plots	

<u>Appendix E – Hydrologic Data</u>

DMS Boundary Inspection Report $- \frac{6}{2}/2023$	DMS Boundar	ry Inspection Report	- 6/2/2023	3	. 61
---	-------------	----------------------	------------	---	------

PROJECT SUMMARY

The Cedar Branch Restoration Site (CBRS) was completed in April 2018 and restored a total of 7,047 linear feet of stream. The CBRS is a riparian system in the Lower Yadkin River Basin (03040103 8-digit cataloging unit) in Randolph County, North Carolina. The site's natural hydrologic regime had been substantially modified through the relocation and straightening of the existing stream channels, impacted by cattle access, and cleared of any riparian buffer. This completed project restored impacted agricultural lands to a stable stream ecosystem with a functional riparian buffer and floodplain access.

The CBRS is protected by a 20.6 acre permanent conservation easement, held by the State of North Carolina. The site is located approximately 2.8 miles west of Sophia, North Carolina. Specifically, the site is 0.5 mile west on Mt. Olive Church Road from its intersection with Edgar Road (SR-1526).

The North Carolina Ecosystem Enhancement Program (NCEEP) publication in 2009 identified HUC 03040103050040 (Caraway Creek) as a Targeted Local Watershed (TLW). The project is also located within the Upper Uwharrie Local Watershed Plan (LWP) study area. The goals and priorities for the CBRS are based on the information presented in the Lower Yadkin River Basin Restoration Priorities: maintaining and enhancing water quality, restoring hydrology, and improving fish and wildlife habitat (NCEEP, 2009). The project will support the following basin priorities:

- Managing stormwater runoff
- Reducing fecal coliform inputs
- Improving/restoring riparian buffers
- Reducing sediment loading
- Improving stream stability
- Reducing nutrient loading
- Excluding livestock and implementing other agricultural BMP's

The goals for the project are to:

- Restore channelized and livestock-impacted streams to stable C/Cb channels.
- Restore a forested riparian buffer to provide bank stability, filtration, and shading.

The project goals will be addressed through the following objectives:

- Relocate a channelized stream to its historic landscape position.
- Install cross-sections sized to the bankfull discharge.
- Create bedform diversity with pools, riffles, and habitat structures
- Fence out livestock to reduce nutrient, bacterial, and sediment impacts from adjacent grazing and farming practices.
- Plant the site with native trees and shrubs and an herbaceous seed mix.

To restore the site, the stream was re-meandered and the bankfull elevation was tied to the historic floodplain where feasible. This restoration is expected to create wetland pockets throughout the new floodplain and bankfull bench. The entire site was planted to establish a forested riparian buffer.

The monitoring components were installed in April 2018. Three groundwater monitoring wells were installed to monitor the development of wetlands in the floodplain along the EI portions of T1 and T3. Three automatically recording pressure transducer stream gauges that take a reading every 10 minutes were installed near the top of T1, T1-1, and T3 to document flow within those reaches. Cameras were installed in the vicinity of each of these gauges and set to record a short video once a day to provide additional verification of flow. An additional stream gauge was installed along UTCC to record the occurrence of bankfull events. Thirteen 10 m x 10 m permanent vegetation monitoring plots were established. The locations of the planted stems relative to the origin within these plots, as well as the species, were recorded and planted stems were grouped into size categories (0-10 cm, 10-50 cm, 50-100 cm, >137 cm). Any

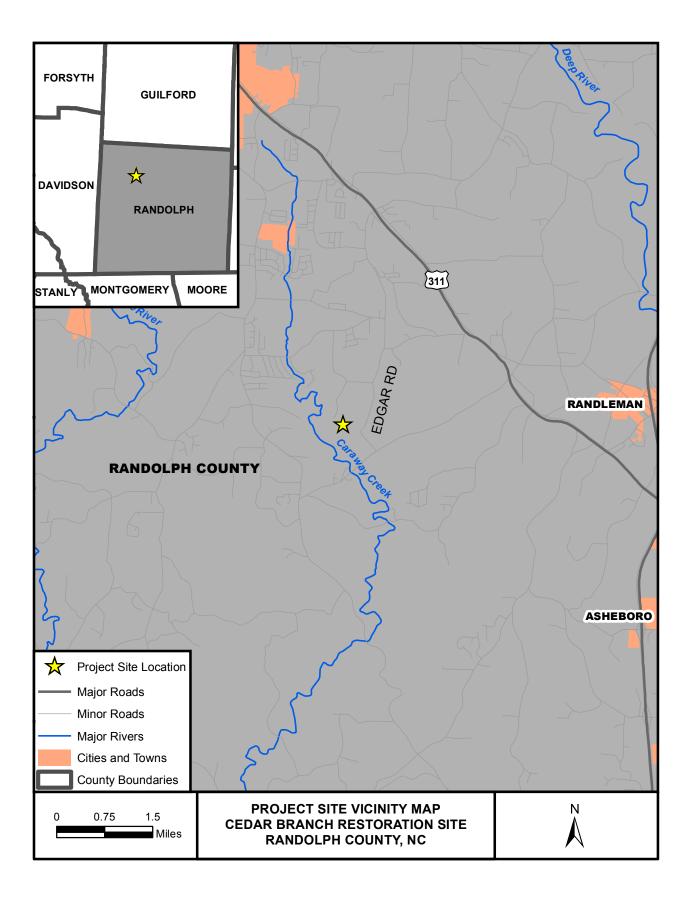
volunteers found within the plots were also grouped into size categories by species, but separate from the planted stems. Twelve permanent photo reference points were established and will be taken annually. Fifteen permanent cross-sections (ten riffle cross-sections and five pool cross-sections) were also established, and a detailed longitudinal profile of the stream was taken. Wolman pebble counts were performed at all of the riffle cross-sections. The cross-section measurements will be repeated in future monitoring years, but the longitudinal profile and the Wolman pebble counts will only be repeated if there are concerns about bed elevation adjustments. Reports will be submitted to DMS each year.

Vegetative success criteria for the site is 320 woody stems/acre after three years, 260 woody stems/acre after five years, and 210 woody stems/acre after seven years. A minimum of two bankfull events in separate years must also be recorded during the monitoring period. Bank height ratios should not exceed 1.2 and the entrenchment ratios should be 2.2 or greater. Visual assessments will also be used to identify problem areas.

MONITORING RESULTS

Vegetation monitoring did not take place during MY06, as stipulated in the Mitigation Plan. Vegetation monitoring will resume in MY07. A treatment of invasive species growing on site was completed in September 2023. This treatment targeted Chinese privet (*Ligustrum sinense*) in areas where preexisting vegetation was not cleared during construction, mainly around the upper reaches of T1. In general, the site is well vegetated, with widespread herbaceous coverage and many large, healthy woody stems. Please see Appendix C – Vegetation Plot Data for a summary of previous years' vegetation monitoring results.

Cross-section monitoring did not take place during MY06, as stipulated in the Mitigation Plan. Visual assessment of the stream showed the stream to be stable and functioning as designed with no areas of bank erosion or bed aggradation/degradation noted. Please see Appendix D for the previous year's cross-section plots.


According to the Randolph County Soil Survey, the growing season at the CBRS extends from March 24 to November 13 (235 days). Daily rainfall data were obtained from the NC State Climate Office for a local weather station in Asheboro, NC. In 2023, April and July experienced above average rainfall, while January, February, March, May, and August experienced average rainfall. The months of July, September, October, and November experienced below average rainfall for the site. Overall, the area experienced average rainfall during the 2023 growing season (annual 30th percentile: 30.21", annual 70th percentile: 56.20", 2023 total: 41.34").

In addition to traditional stream monitoring, there are areas of fringe wetlands that were restored and enhanced along the bankfull benches of some reaches. While these areas do not have success criteria associated with them, they are monitored for informational purposes and help illustrate the overall success of the restoration site. During the site's sixth growing season, the groundwater monitoring well on T1 achieved 27 days (11.3%) of continuous saturation within twelve inches of the soil surface, while the two wells on T3 achieved 60 days (25.4%) and 4 days (1.7%). Several species of hydrophytic vegetation have been noted growing along the floodplains of T1 and T3 in all monitoring years. These species include *Juncus effuses* (FACW), *Cyperus strigosus* (FACW), *Persicaria pensylvanica* (FACW), and *Persicaria sagittata* (OBL).

The stream gauge on UTCC malfunctioned and did not provide accurate data in 2023 and so no bankfull events were recorded this year. This gauge will be replaced before the start of the 2024 growing season. All 3 of the stream flow gauges recorded greater than 30 consecutive days of flow. The gauge on T1 recorded 121 days, the gauge on T1-1 recorded 40 days, and the gauge on T3 recorded 161 days. This data was further backed up by the flow cameras, which recorded 209 consecutive days for T1, 109 consecutive days for T1-1, and 164 consecutive days for T3. The difference in the success rates of the cameras compared to

the gauges can be attributed to the fact that the cameras can provide better evidence of stream flow at the low levels of flow that the project streams experienced in 2023.

On June 2, 2023, DMS completed a boundary inspection to verify the integrity of the conservation easement and identify any potential issues on the site. This inspection identified three action items than needed attention. These items were to remove the trash identified in previous monitoring reports that was within the easement near the beginning of T1, repair the damaged fence also identified in previous monitoring reports near stationing 17+00, and reset a loose corner marker post. All three of these items were addressed at the same time as the September 2023 invasive treatment. Please see Appendix F – Additional Data for a copy of the inspection report from this visit. KCI reviewed the site boundary on December 11, 2023 and no encroachment or other issues were noted. The fence is intact around the T1 portion of the site and signs are present at regular intervals around the entire site boundary.

REFERENCES

- NCDENR, Ecosystem Enhancement Program. 2009. Broad River Basin Restoration Priorities 2009. Raleigh, NC. Last accessed 1/2016 at: <u>http://portal.ncdenr.org/c/document_library/get_file?uuid=705d1b58-cb91-451e-aa58-</u> 4ef128b1e5ab&groupId=60329
- NCDENR, Ecosystem Enhancement Program. 2014. NCDENR, Ecosystem Enhancement Program. 2014. Stream and Wetland Mitigation Monitoring Guidelines. Last accessed1/2016 at: <u>http://portal.ncdenr.org/c/document_library/get_file?p_1_id=60409&folderId=18877169</u> <u>&name=DLFE-86604.pdf</u>
- NCDENR, Ecosystem Enhancement Program. 2014. Stream and Wetland Mitigation Monitoring Guidelines. Last accessed 6/2015 at: <u>http://portal.ncdenr.org/c/document_library/get_file?p_l_id=60409&folderId=18877169</u> <u>&name=DLFE-86606.pdf</u>
- NC Wetland Functional Assessment Team. 2010. NC Wetland Assessment Method (NC WAM) User Manual, version 4.1. Last accessed 11/2012 at: <u>http://portal.ncdenr.org/c/document_library/get_file?uuid=76f3c58b-dab8-4960-ba43-45b7faf06f4c&groupId=38364</u>
- Schafale, M.P. and A.S. Weakley. 2012. Guide to the Natural Communities of North Carolina: Fourth Approximation. Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment and Natural Resources. Raleigh, NC.
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey of Randolph County, North Carolina. 2006

APPENDIX A

Background Tables

					Mitigatio	n Credi	ts			
	:	Stream		oarian etland	Non-riparian Wetland Bu		Buffer	Nitrogen Nutrient Offset	Phosphorous Nutrient Offset	
Туре	R	RE	R	RE	R	R	Е			
Linear Feet/Acres	5,230	1,813								
Credits†	5,234	966								
TOTAL CREDITS		6,200								
			1		Project Co	mpone			· · · · · · · · · · · · · · · · · · ·	
Project Component -or- Reach ID		Stationing/ Location	Foo	sting otage/ reage	Appro (PI, PII				Restoration Footage/ Acreage	Mitigation Ratio
	50-	+00 to 55+50	5	50	Enhancen	nent II	2	20	550	2.5:1
Tributary 1	55-	+50 to 58+24	2	.57	Enhancer	nent I	1	83	274	1.5:1
	58-	+24 to 61+17	229		Restora	Restoration		.94	293	1:1
Tributary 1-1	70-	+00 to 73+13	313		Enhancement II		1	25	313	2.5:1
Tributary 2	80+00 to 80+49		46		Enhancement II		20		49	2.5:1
1110utary 2	80-	+49 to 81+27		77	Restoration		78		78	1:1
Tributary 3	90-	90+00 to 96+27		624 Enha		ement I		18	627	1.5:1
Thouary 5	96+	+27 to 101-57	5	17	Restora	tion	530		530	1:1
Tributary 3-1	150-	+00 to 150+78		68	Restoration		78		78	1:1
Tributary 4*	250-	+00 to 257+42	6	77	Restoration		692		692	1:1
Tributary 5**	300-	+00 to 300+95		64	N/A	L	0		(95)	N/A
UTCC*	10-	+00 to 46+09	3,	246	Restora	tion	3,562		3,559	1:1
				(Component	Summa				
Restoration I	Level	Stream (linear feet)	Ripa	rian Wo	etlands (Ac	res)	Rip Wet	on- arian lands cres)	Buffer (square feet)	Upland (Acres)
			River	rine	Non-Riv	erine				
Restoration	n	5,234 lf								
Enhanceme	ent									
Enhancemer	nt I	901								
Enhancemen	t II	912								
TOTAL CRE	DITC	6,200								

 R= Restoration
 RE= Restoration Equivalent of Creation or Enhancement

 *=Crossings have been removed from creditable linear footage for all project streams.

 **=Tributary 5 does not have any mitigation credit, but is included to show its stationing as part of the mitigation project.

 †=Changes made during construction resulted in the loss of 4 lf of stream, but per IRT review, this did not result in a loss of credits. Please see Appendix F for additional information.

Activity or Report	Data Collection Complete	Actual Completion or Delivery		
Mitigation Plan		May 2017		
Final Design - Construction Plans		March 8, 2017		
Construction Grading Completed		March 28, 2018		
Planting Completed		April 6, 2018		
Baseline Monitoring/Report	April 2018	May 2018		
Vegetation Monitoring	April 10, 2018			
Stream Survey	April 11, 2018			
Year 1 Monitoring	January 2019	January 2019		
Vegetation Monitoring	November 5, 2018			
Stream Survey	January 14, 2019			
Crossing Repair(outside easement)	May 2019			
Year 2 Monitoring	July 2019	December 2019		
Vegetation Monitoring	July 9, 2019			
Stream Survey	June 26, 2019			
Year 3 Monitoring	July 2020	December 2020		
Vegetation Monitoring	July 31, 2020			
Stream Survey	June 30, 2020			
Invasive Treatment		July 16, 2021		
Year 4 Monitoring	November 2021	December 2021		
Supplemental Planting		January 4, 2022		
Invasive Treatment		July 26, 2022		
Year 5 Monitoring	December 2022	January 2023		
Vegetation Monitoring	July 19, 2022			
Stream Survey	December 14, 2022			
Invasive Treatment		September 14, 2023		
Fence Repair and Debris Removal		September 14, 2023		
Year 6 Monitoring	December 2023	December 2023		

Table 3. Project Contacts								
Cedar Branch Restoration Site, DMS Project #97009								
Design Firm	KCI Associates of North Carolina							
	4505 Falls of Neuse Road							
	Suite 400							
	Raleigh, NC 27609							
	Contact: Mr. Adam Spiller							
	Phone: (919) 278-2514							
	Fax: (919) 783-9266							
Construction Contractor	KCI Environmental Technologies and Construction							
	4505 Falls of Neuse Road, Suite 400							
	Raleigh, NC 27609							
	Contact: Mr. Adam Spiller							
	Phone: (919) 278-2514							
Planting Contractor	Conservation Services Inc.							
	1620 N. Delphine Ave.							
	Waynesboro, VA 22980							
	Contact: Mr. David Coleman							
	Phone: (540) 941-0067							
Monitoring Performers	KCI Associates of North Carolina							
	4505 Falls of Neuse Road							
	Suite 400							
	Raleigh, NC 27609							
	Contact: Mr. Adam Spiller							
	Phone: (919) 278-2514							
	Fax: (919) 783-9266							

Project Name					C	edar Branch Resto	ration Site			
County	Randolph County									
Project Area (acres)						21.3 acres	-			
Project Coordinates (lat. and	l long)				3	5.823878° N, -79.				
rioject Coordinates (lat. and		ioct We	atershed Sum	mary Inf			90833 W			
Physiographic Province	110	jett wa		inary init	or ma	Piedmont				
River Basin			Yadkin							
USGS Hydrologic Unit 8-dig	:4									
. 8 8	IL									
DWQ Sub-basin						13-2-3				
Project Drainage Area (acrea						294 acres				
Project Drainage Area Perce	entage of Impervious	s Area				4%				
CGIA Land Use Classification	on					ver 59% (173 ac), 1 veloped 5% (15 ac				
	E	xisting	Reach Summ					11 2 70 (0 ac)		
Parameters	UTCC		1, T1-1	T2		T3, T3-1	T4	T5		
Length of reach (linear feet)	3,038		1,349	124		1,209	627	61		
Drainage area (acres)	88 acres	3	30 acres	18 acre	es	28 acres	30 acres	31 acres		
NCDWQ Water Quality Classification	С	С		С		С	С	С		
Rosgen Classification	G4c-E4	G4		G4		E4	G4	C4b		
Evolutionary trend	Channelized,	Channelized,		Channel		Channelized,	Channelized,	Stable		
Etolationary dena	Stage III	Stage III		d, Stage Meckler		Stage III	Stage III Stage III			
Mapped Soil Series	Mecklenburg	Wynott-Enon		rg Cla		Mecklenburg	Mecklenburg	Mecklenburg		
	Clay Loam	Complex		Loam		Clay Loam	Clay Loam	Clay Loam		
Drainage class	Well drained	Well drained		Well draine		Well drained Well drained		Well drained		
Soil Hydric status	Hydric	Hydric		Hydri		Hydric	Hydric	Hydric		
Slope FEMA classification	1.5%	3.1%		3.1%		3.7%	3.1%	2.7%		
Existing vegetation	Zone X Pasture,		Zone X Pasture,	Zone Z Headwa		Zone X	Zone X	Zone X Headwater		
community	Headwater Forest	Headwater Forest		Fores		Pasture	Pasture	Forest		
2	Exi	isting V	Vetland Sum	mary Info	rma	ition				
Parameters										
Size of Wetland (acres)	0).02 (W	A)	0.03 (WB and WC)						
Wetland Type	Bottomlan	nd Hard	wood Forest	vood Forest Bottomland Hardwood Forest				est		
Mapped Soil Series	Wynot	t-Enon	Complex	Complex Mecklenburg clay loam						
Drainage class	W	ell Dra	ined			W	ell Drained			
Soil Hydric Status		Hydrie	с				Hydric			
Source of Hydrology	Strea	am Floo	odplain		Hillside Seepage and Stream Floodplain					
Hydrologic Impairment	ing and	Grazing		Ditching and Grazing						
Existing vegetation community	y Forested Wetl	· · ·		,		nergent Wetland (1	Non-Tidal Fresh	water Marsh)		
			gulatory Con	sideration			~			
Regulation		Applicable?		Resolved?		Supporting Documentation				
Waters of the United States - S		Yes		NWP 27		Jurisdictional Determination				
Waters of the United States - S	Section 401		Yes		NWP 27		Jurisdictional Determination			
Endangered Species Act	1	No		N/A		N/A				
Historic Preservation Act	Historic Preservation Act				Ν	J/A	N/A			
Coastal Zone Management Ac (CZMA)/ Coastal Area Manag		1	No		N/A		N/A			
Essential Fisheries Habitat			No			N/A N/A				

APPENDIX B

Visual Assessment Data

LEGEND:

BEGIN TRIB 1

VEG PLOT ACHIEVING DENSITY CRITERION	794/697
STREAM GAUGE	•
WETLAND GAUGE	•
	R
CROSS-SECTION	• • •
CONSERVATION EASEMENT	
STREAM RESTORATION	
NON-CREDIT STREAM LENGTH	
STEP POOL	
RIFFLE CASCADE	
RIFFLE GRADE CONTROL	
LIVE LIFT	Manager 1
INVASIVE SPECIES TREATMENT (2023)	

REMO FROM SEPT

2023

END (FLOW CAMERA) WETLAND BEGIN TRIB 3 WETLAND GAUGE 3 TRIB 3-1 GRAPHIC SCALE

BEGIN UTCC BEGIN TRIB 2

:			
CHIEVING DENSITY CRITERION ELOW DENSITY CRITERION OTAL / PLANTED STEM DENSITY JGE AUGE IT TION ION EASEMENT STORATION HANCEMENT I HANCEMENT I STREAM LENGTH			REVISIONS
CADE ANCEMENT DE CONTROL PECIES TREATMENT (2023)		9	NCDEQ – DIVISION OF MITIGATION SERVICES
AYO5 (2022) 2018 STATEWIDE ORTHOIMAGERY			SUITE 400 A 27609
-60' -30' 0' 60' 120' GRAPHIC SCALE			4505 FALLS OF NEUSE ROAD, SUITE 400 RALEIGH, NORTH CAROLINA 27609
TREAM AUGE UTCC TRIB 5 515 EDC EDC EDC	P0-00-10-10-10-10-10-10-10-10-10-10-10-10	CEDAR BRANCH STREAM RESTORATION SITE MONITORING YEAR 6	RANDOLPH COUNTY, NORTH CAROLINA
		DATE: NOV 2023 SCALE: GRAPHIC	
		CURREN CONDITIO PLAN VIE	NC
		SHEET 2 0	OF 2

Table 5	Visual Stream Morphology Stability Assessment

Cedar Branch Stream Restoration Site, DMS Project#97009

Reach ID

UTCC

Assessed Length		3,559			Assessment Date:	12/11/2023	
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%
		2. <u>Degradation</u> - Evidence of downcutting	1		0	0	100%
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	48	48			100%
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	47	47			100%
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	47	47			100%
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	48	48			100%
		2. Thalweg centering at downstream of meander (Glide)	47	47			100%
		-	-				
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse	1		0	0	100%
				Totals	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	36	36			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	36	36			100%
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	36	36			100%
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	36	36			100%
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	36	36			100%

Table 5		Visual Stream Morphology Stability Assessment					
	tream Restoration Site, I	u de la construcción de la const					
Reach ID		T1					
Assessed Length	1	1,117			Assessment Date:	12/11/2023	3
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	14	14			100%
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	14	14			100%
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	14	14			100%
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	14	14			100%
		2. Thalweg centering at downstream of meander (Glide)	14	14			100%
			_			-	-
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse	1		0	0	100%
				Totals	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	5	5			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	5	1		100%
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	5	5			100%
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	5	5			100%

Table 5		Visual Stream Morphology Stability Assessment					
Cedar Branch St	ream Restoration Site, l	DMS Project#97009					
Reach ID		Τ2					
Assessed Length		127			Assessment Date:	12/11/2023	
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	4	4			100%
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	3	3			100%
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	3	3			100%
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	4	4			100%
		2. Thalweg centering at downstream of meander (Glide)	3	3			100%
	-						-
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%
				Totals	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	0	0			N/A
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	0	0			N/A
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	0	0			N/A
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			N/A
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	0	0			N/A

Table 5		Visual Stream Morphology Stability Assessment					
Cedar Branch St	ream Restoration Site, D	MS Project#97009					
Reach ID		Τ3					
Assessed Length		1,157			Assessment Date:	12/11/2023	
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%
		2. <u>Degradation</u> - Evidence of downcutting	27 27		0	0	100%
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate					100%
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	37	37			100%
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	37	37			100%
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	27	27			100%
		2. Thalweg centering at downstream of meander (Glide)	37	37			100%
	-		-				
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%
				Totals	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	28	28			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	28	28			100%
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	28	28			100%
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	28	28			100%
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	28	28			100%

T4

Cedar Branch Stream Restoration Site, DMS Project#97009

Reach ID

Assessed Length		692			Assessment Date:	12/11/2023	
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	19	19			100%
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	22	22			100%
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	22	22			100%
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	19	19			100%
		2. Thalweg centering at downstream of meander (Glide)	22	22			100%
	-						
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse	-		0	0	100%
				Totals	0	0	100%
Major Channel Category 1. Bed 2. Bank 3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	13	13			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	13	13			100%
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	13	13			100%
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	13	13			100%
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	13	13			100%

Table 6	Vegetation Condition Assessment
---------	---------------------------------

Planted Acreage	20.6			Assessment Date:	12/11/2023	
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Pattern and Color	0	0.00	0.0%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	Pattern and Color	1	0.36	1.7%
		ThresholdCCPV DepictionPolygonsAcreageAcreageeous0.1 acresPattern and Color00.000.0%rels0.1 acresPattern and Color10.361.7%e0.1 acresPattern and Color10.361.7%e0.25 acresPattern and Color00.000.0%Cumulative Total10.361.7%Cumulative TotalCUPV DepictionPolygonsCombined Acreagegons1000 SFPattern and Color00.000.000.0%0.0%0.0%				
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	Pattern and Color	0	0.00	0.0%
			Cumulative Total	1	0.36	1.7%
Easement Acreage	20.6					
Vegetation Category	Definitions		CCPV Depiction			
4. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	1000 SF	Pattern and Color	0	0.00	0.0%
			CCPV DepictionPolygonsAcreageAcreagePattern and Color00.000.0%Pattern and Color10.361.7%Total10.361.7%Pattern and Color00.000.0%Cumulative Total10.361.7%CCPV DepictionNumber of PolygonsCombined AcreageMumber of PolygonsCombined Acreage% of Easement Acreage			
5. Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	none	Pattern and Color	0	0.00	0.0%

Cedar Branch Stream Restoration Site, DMS Project# 97009

Photo Reference Photos

PP1 - MY-00 - 4/18/18

PP2-MY-00-4/18/18

PP3-MY-00-4/18/18

PP1-MY-06-12/11/23

PP2 - MY - 06 - 12/11/23

PP3-MY-06-12/11/23

PP4 - MY -- 00 - 4/18/18

PP5 - MY - 00 - 4/18/18

PP6-MY-00-4/18/18

PP4-MY-06-12/11/23

PP5 - MY - 06 - 12/11/23

PP6-MY-06-12/11/23

PP7 - MY - 00 - 4/18/18

PP8 - MY-00 - 4/18/18

PP9-MY-00-4/18/18

PP7-MY-06-12/11/23

PP8 - MY - 06 - 12/11/23

PP9-MY-06-12/11/23

PP10 - MY-00 - 4/18/18

PP11 - MY-00 - 4/18/18

PP12-MY-00-4/18/18

PP10-MY-06-12/11/23

PP11 – MY-06 – 12/11/23

PP12-MY-06-12/11/23

APPENDIX C

Vegetation Plot Data

Table 7. Stem Count by Plot and Species Cedar Branch Restoration Site, DMS Project #97009)									
	Annual Means									
	MY05 (2	2022)	MY03 (2	2020)	MY02 (2	2019)	MY01 (MY00 (2018)		
Species	Planted	Total	Planted	Total	Planted	Total	Planted	Total	Planted	Total
American Elm (Ulmus americana)		3		1		1				
Baccharis (Baccharis hamifolia)		1		1						
Black Walnut (Juglans nigra)		7		1		1				
Black Willow (Salix nigra)		3		3		3		1		
Eastern Sy camore (Platanus occidentalis)	47	51	46	48	46	48	46	46		
Green Ash (Fraxinus pennsylvanica)	37	40	37	37	37	37	36	38		
Oak (Quercus sp.)									30	30
Persimmon (Diospyros virginiana)	12	12	12	13	12	13	8	8		
Pin Oak (Quercus palustris)	8	9	5	5	5	5	5	5		
River Birch (Betula nigra)	14	14	16	16	16	16	16	16	6	6
Silver Willow (Salix sericea)				1		1		1		
Smooth Sumac (Rhus glabra)								1		
Swamp Chestnut Oak (Quercus michauxii)	40	40	52	52	52	52	68	68		
Sweet Gum (Liquidambar styraciflua)		8		2						
Tulip Poplar (Liriodendron tulipifera)	15	15	19	21	19	21	31	31	13	13
White Oak (Quercus alba)	21	21	20	20	20	20				
Willow Oak (Quercus phellos)	30	31	30	30	30	30	31	31	1	1
Unknown									280	280
Stem count	224	255	237	251	237	248	241	246	330	330
size (ares)	13		13		13		13		13	
size (ACRES)	0.32	21	0.32	21	0.32	1	0.32	21	0.32	21
Species count	9	14	9	15	9	13	8	11	5	5
Stems per ACRE	697	794	738	781	738	772	750	766	1027	1027

APPENDIX D

Stream Measurement and Geomorphology Data

Table 8. UTCC Baseline Stream D	ata Sum	mary																
Cedar Branch Restoration Site, DN	IS Proje	ect #9700	9															
Parameter		Pre-Exis	ting Co	ndition]	Reference	e Reach(es) Data			Design			As-b	uilt		
		T	Γ		T	T	T	Γ	T	1			T	T				
Dimension - Riffle	Min	Mean	Med	Max	n	Min	Mean	Med	Max	n	UTCC-1	UTCC-2	UTCC-3	Min	Mean	Max	n	
Bankfull Width (ft)	7.8	10.5	10.1	13.9	4	9.0	13.3	13.1	17.7	6	11.7	13.2	15.0	11.7	13.4	15.2	5	
Floodprone Width (ft)	9.6	31.7	33.5	50.0	4	13.1	55.6	50.0	100.0	6	90	100	105	>40	>40	>50	5	
Bankfull Mean Depth (ft)	1.2	1.4	1.4	1.7	4	0.9	1.2	1.2	1.5	6	1.0	1.0	1.1	0.8	1.0	1.1	5	
Bankfull Max Depth (ft)	1.7	2.2	2.2	2.8	4	1.3	1.7	1.7	2.0	6	1.5	1.5	1.7	1.4	1.6	1.8	5	
Bankfull Cross-Sectional Area (ft ²)	11.3	14.6	15.1	16.9	4	10.4	16.4	14.0	24.7	6	11.3	13.2	16.9	9.6	12.8	15.8	5	
Width/Depth Ratio	5.3	7.6	6.9	11.4	4	7.6	11.1	11.5	13.4	6	12.1	13.2	13.2	10.8	14.3	18.1	5	
Entrenchment Ratio	1.2	2.9	2.6	5.0	4	1.3	3.8	3.9	5.9	6	>2.2	>2.2	>2.2	2.9	3.6	4.8	5	
Bank Height Ratio	1.0	1.9	2.0	2.5	4	1.0	1.0	1.0	1.0	6	1.0	1.0	1.0	1.0	1.0	1.0	5	
Pattern																		
Channel Beltwidth (ft)	*							45			41-54	46-58	53-74	41	54	74	47	
Radius of Curvature (ft)	*							13-42			25-35	30-35	35-45	25	34	45	47	
Rc:Bankfull width (ft/ft)	*							1.3-4.4			2.1-3.0	2.3-2.7	2.3-3.0	2.1	2.6	3.0	47	
Meander Wavelength (ft)	*							93-136			101-150	115-155	153-180	101	142	180	47	
Meander Width Ratio			*					4.5-5.0			3.5-4.6	3.5-4.4	3.5-4.9	3.5	4.1	4.9	47	
Profile																		
Riffle Length (ft)														4.6	34.7	57.4	48	
Riffle Slope (ft/ft)	0.021	0.032	0.03	0.048	4		0.0	013-0.02	8		0.020-0.037	0.020-0.035	0.020-0.035	0.039	0.023	0.053	48	
Pool Length (ft)	*							3-25			19-42	20-49	36-61	4.3	28.5	55.0	47	
Pool Spacing (ft)	*							30-59			50-83	67-91	79-105	37.3	77.5	124.0	47	
Substrate and Transport Paramete	rs													-				
SC% / Sa% / G% / C% / B% /Be%	09	%/23%/6	3%/13%	6/1%/0%		0.3	8%/19%/6	6%/14%	6/0.7%/09	%			3%/6%/67%/23%/0%/0%					
d16 / d35 / d50 / d84 / d95 (mm)		1.5/5	.4/16/55	5/90			1.7/6	.4/19/56	/93					10/27/37/78/113				
Channel length (ft)	3,246										1,400	512	1,650	3,562				
Drainage Area (SM)			0.45				0	.13-0.49			0.22	0.28	0.41	0.41				
Rosgen Classification		(64c-E4					B4c			C4	C4	C4	C4				
Sinuosity			1.0					1.2			1.2	1.2	1.2	1.2				
Water Surface Slope (ft/ft)			0.015					0.013			0.013	0.013	0.013	0.013				

Table 8. T1 Baseline Stream Data Cedar Branch Restoration Site, DM		•)9																	
Parameter	0	Pre-Exis		ndition		Refe	ence Rea	ach(es) E	Data (UTC	CC)		Desi	gn			As-b	ouilt			
Dimension - Riffle	Min	Mean	Med	Max	n	Min	Mean	Med	Max	n	Min	Mean	Max	n	Min	Mean	Max	n		
Bankfull Width (ft)	5.8	Wiedli	wicu	WidA	- 11	9.0	13.3	13.1	17.7	6	7.8	Ivicali	WidA		8.9	Ivicali	IVIAX			
Floodprone Width (ft)	9.0					13.1	55.6	50.0	100.0	6	50				>40					
Bankfull Mean Depth (ft)	0.9					0.9	1.2	1.2	1.5	6	0.6				0.5					
Bankfull Max Depth (ft)	1.2					1.3	1.7	1.7	2.0	6	1.0				1.0					
Bankfull Cross-Sectional Area (ft ²)	5.0					10.4	16.4	14.0	24.7	6	5.0				4.6					
Width/Depth Ratio	6.7					7.6	11.1	11.5	13.4	6	12.1				17.0					
Entrenchment Ratio	1.5					1.3	3.8	3.9	5.9	6	>2.2				4.2					
Bank Height Ratio	2.3					1.0	1.0	1.0	1.0	6	1.0				1.0					
Pattern																				
Channel Beltwidth (ft)			*					45			29-36				29	33	36	14		
Radius of Curvature (ft)	*							13-42			15-25				15	20	25	14		
Rc:Bankfull width (ft/ft)	*						1.3-4.4			1.9-3.2				1.9	2.6	3.2	14			
Meander Wavelength (ft)	*						93-136			72-80				72	76	80	14			
Meander Width Ratio			*			4.5-5.0					3.7-4.6				3.7	4.2	4.6	14		
Profile											•							-		
Riffle Length (ft)															3.6	20.9	32.9	14		
Riffle Slope (ft/ft)	0.018						0.0	013-0.02	8		0.025-0.040				0.019	0.042	0.076	14		
Pool Length (ft)	*							3-25			8-25				5.1	11.8	20.1	14		
Pool Spacing (ft)	*							30-59			42-51				17.1	40.1	58.5	14		
Substrate and Transport Parameter						1														
SC% / Sa% / G% / C% / B% /Be%	0%/15%/75%/10%/0%/0%				0.3%/19%/66%/14%/0.7%/0%						1%/14%/79%/6%/0%/0%									
d16 / d35 / d50 / d84 / d95 (mm)		2.1/5	5/12/50/	98			1.7/6	5.4/19/56	/93						2.7/15/24/47/77					
Channel length (ft)			1,036										1,118							
Drainage Area (SM)			0.05				0	.13-0.49					0.05							
Rosgen Classification			G4					B4c					C4b							
Sinuosity			1.0					1.2				1.	3			1.3				
Water Surface Slope (ft/ft)			0.031					0.013				0.02	25			0.025				

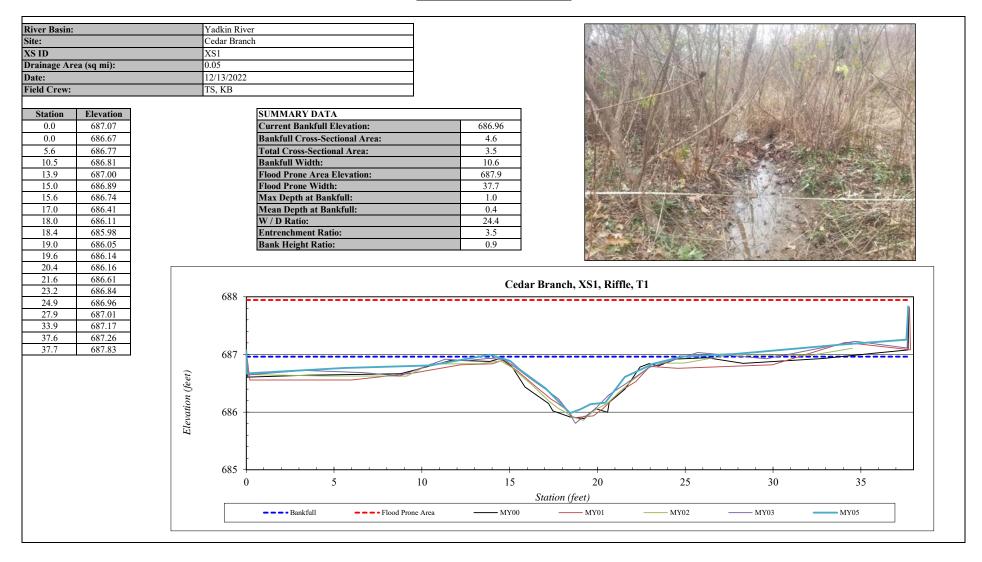
Parameter		Pre-Evis	ting Co	ndition		Refe	ence Re	ach(es) F	ata (UT	(\mathbf{D})		Desi	As-built							
	Pre-Existing Condition											TIS OUT								
Dimension - Riffle	Min	Mean	Med	Max	n	Min	Mean	Med	Max	n	Min	Mean	Max	n	Min	Mean	Max	n		
Bankfull Width (ft)	**					9.0	13.3	13.1	17.7	6	7.8				**					
Floodprone Width (ft)	**					13.1	55.6	50.0	100.0	6	30				**					
Bankfull Mean Depth (ft)	**					0.9	1.2	1.2	1.5	6	0.6				**					
Bankfull Max Depth (ft)	**					1.3	1.7	1.7	2.0	6	1.0				**					
Bankfull Cross-Sectional Area (ft ²)	**					10.4	16.4	14.0	24.7	6	5.0				**					
Width/Depth Ratio	**					7.6	11.1	11.5	13.4	6	12.1				**					
Entrenchment Ratio	**					1.3	3.8	3.9	5.9	6	>2.2				**					
Bank Height Ratio	**					1.0	1.0	1.0	1.0	6	1.0				**					
Pattern					•						•									
Channel Beltwidth (ft)			*					45			N/A				**					
Radius of Curvature (ft)			*					13-42			15-25				**					
Rc:Bankfull width (ft/ft)		*						1.3-4.4			1.9-3.2				**					
Meander Wavelength (ft)	*						93-136			N/A				**						
Meander Width Ratio	*				4.5-5.0					N/A				**						
Profile											•						•			
Riffle Length (ft)	**			-											9.4	20.0	24.9	4		
Riffle Slope (ft/ft)	**						0.0	013-0.02	8		0.026-0.027				0.023	0.025	0.027	4		
Pool Length (ft)	**							3-25			12-17				6.4	8.1	9.0	3		
Pool Spacing (ft)	**							30-59			38				36.4	37.8	39.1	3		
Substrate and Transport Paramete	ers																			
SC% / Sa% / G% / C% / B% /Be%	**				0.3	%/19%/6	66%/14%	/0.7%/09	%		**									
d16 / d35 / d50 / d84 / d95 (mm)	**						1.7/6	6.4/19/56	/93								**			
Channel length (ft)	123											127								
Drainage Area (SM)			0.03				0	.13-0.49				1	0.03							
Rosgen Classification			G4					B4c				C4								
Sinuosity			1.0					1.2				N/A								
Water Surface Slope (ft/ft)			0.031			ł		0.013				0.016								

Parameter		Pre-Exis	time Ca	ndition		Dafa	rence Rea	ab(aa) T	Anto (LIT)	(D)		Desi	~	As-built						
r ar ameter		FIC-EXIS	ting Co	nannon	Kelei	lence Kea	icii(es) L)	l	As-built									
Dimension - Riffle	Min	Mean	Med	Max	n	Min	Mean	Med	Max	n	Min	Mean	Max	n	Min	Mean	Max	n		
Bankfull Width (ft)	4.7	5.4		6.0	2	9.0	13.3	13.1	17.7	6	7.8				5.9	5.9	6.0	2		
Floodprone Width (ft)	11.3	13.5		15.7	2	13.1	55.6	50.0	100.0	6	30				>25	>25	>25	2		
Bankfull Mean Depth (ft)	0.8	0.8		0.8	2	0.9	1.2	1.2	1.5	6	0.6				0.4	0.5	0.5	2		
Bankfull Max Depth (ft)	1.3	1.3		1.3	2	1.3	1.7	1.7	2.0	6	1.0				0.7	0.8	0.8	2		
Bankfull Cross-Sectional Area (ft ²)	3.9	4.5		5.0	2	10.4	16.4	14.0	24.7	6	5.0				2.5	2.8	3.1	2		
Width/Depth Ratio	5.6	6.4		7.1	2	7.6	11.1	11.5	13.4	6	12.1				11.4	12.6	13.8	2		
Entrenchment Ratio	1.3	2.4		3.4	2	1.3	3.8	3.9	5.9	6	>2.2				4.4	4.7	5.1	2		
Bank Height Ratio	1.6	2.1		2.6	2	1.0	1.0	1.0	1.0	6	1.0				1.0	1.0	1.0	2		
Pattern																				
Channel Beltwidth (ft)	*							45			N/A									
Radius of Curvature (ft)	*							13-42			15-25									
Rc:Bankfull width (ft/ft)	*							1.3-4.4			1.9-3.2									
Meander Wavelength (ft)	*							93-136			N/A									
Meander Width Ratio	4					4.5-5.0					N/A									
Profile																				
Riffle Length (ft)															19.7	28.1	68.8	26		
Riffle Slope (ft/ft)	0.046	0.067		0.087	2		0.0	013-0.02	8		0.025-0.042				0.021	0.034	0.063	26		
Pool Length (ft)	*							3-25			11-22				3.6	7.3	11.3	35		
Pool Spacing (ft)	*							30-59			32-55				6.8	30.5	85.9	35		
Substrate and Transport Paramete	rs																			
$SC\% \ / \ Sa\% \ / \ G\% \ / \ C\% \ / \ B\% \ / Be\%$	0	0%/31%/6	53%/6%	/0%/0%		0.3	%/19%/6	6%/14%	6/0.7%/09	%					6%/0%/75%/19%/0%/0%					
d16 / d35 / d50 / d84 / d95 (mm)		1.0/2.	4/6.5/33	3/73			1.7/6	.4/19/56	/93							18/32/41/71/105				
Channel length (ft)			1,141			· · · · · · · · · · · · · · · · · · ·							1,157							
Drainage Area (SM)			0.04				0	.13-0.49					0.04							
Rosgen Classification			E4					B4c					C4b							
Sinuosity			1.0					1.2					N/A							
Water Surface Slope (ft/ft)			0.037					0.013					0.035							

Parameter	Pre-Existing Condition						onco Por	ob(es) F	Data (UTC	(D^{r})		Desi	As-built							
)		no ount								
Dimension - Riffle	Min	Mean	Med	Max	n	Min	Mean	Med	Max	n	Min	Mean	Max	n	Min	Mean	Max	n		
Bankfull Width (ft)	6.5					9.0	13.3	13.1	17.7	6	7.8				6.7	6.8	6.9	2		
Floodprone Width (ft)	7.8					13.1	55.6	50.0	100.0	6	30				>30	>30	>30	2		
Bankfull Mean Depth (ft)	0.8					0.9	1.2	1.2	1.5	6	0.6				0.5	0.5	0.5	2		
Bankfull Max Depth (ft)	1.0					1.3	1.7	1.7	2.0	6	1.0				0.8	0.8	0.8	2		
Bankfull Cross-Sectional Area (ft ²)	5.0					10.4	16.4	14.0	24.7	6	5.0				3.3	3.4	3.5	2		
Width/Depth Ratio	8.5					7.6	11.1	11.5	13.4	6	12.1				12.7	13.6	14.6	2		
Entrenchment Ratio	1.2					1.3	3.8	3.9	5.9	6	>2.2				4.7	4.9	5.1	2		
Bank Height Ratio	4.5					1.0	1.0	1.0	1.0	6	1.0				1.0	1.0	1.0	2		
Pattern																				
Channel Beltwidth (ft)			*					45			N/A									
Radius of Curvature (ft)	*							13-42			15-25									
Rc:Bankfull width (ft/ft)	*						1.3-4.4			1.9-3.2										
Meander Wavelength (ft)	*						93-136			N/A										
Meander Width Ratio	*				4.5-5.0					N/A										
Profile																				
Riffle Length (ft)															5.5	21.5	42.1	19		
Riffle Slope (ft/ft)	0.038						0.0	13-0.02	8		0.030-0.040				0.017	0.040	0.121	19		
Pool Length (ft)	*							3-25			13-19				4.0	8.5	12.7	21		
Pool Spacing (ft)	*							30-59			34-48				5.5	32.3	55.1	21		
Substrate and Transport Paramete																				
$SC\% \ / \ Sa\% \ / \ G\% \ / \ C\% \ / \ B\% \ / Be\%$	0	%/23%/	72%/5%	/0%/0%		0.3	%/19%/6	6%/14%	6/0.7%/09	%					3%/	3%/0%/73%/24%/0%/0%				
d16 / d35 / d50 / d84 / d95 (mm)	1.6/4.0/6.4/35/67					1.7/6	.4/19/56	/93							28/37/44/78/115					
Channel length (ft)	677												692							
Drainage Area (SM)			0.05				0	.13-0.49					0.05							
Rosgen Classification			G4					B4c					C4b							
Sinuosity			1.0					1.2				N/2	A			N/A				
Water Surface Slope (ft/ft)			0.031					0.013				0.02	28			0.028				

Table 9. Cross-Section Morphology Data Table																					
Cedar Branch Stream Restoration Site, DMS P	oject i																				
Dimension and Substrate	Cross-Section 1 (Riffle)						C			2 (Pool	.)						3 (Pool	/			
bindision and Substrate			Statio	n 57+1	19, T1						n 57+4	14, T1				S	tation	13+58,	, UTCO	2	
Baseline Bankfull Elevation:				666.60							665.93							657.32			
	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY
Bankfull Width (ft)		8.3	8.6	9.8	9.8			11.8	13.5	12.9	13.4	15.6			13.5	13.6	13.8	15.0	15.0		
Floodprone Width (ft)		>40	>40	>40	>35			-	-	-	-	-			-	-	-	-	-		
Bankfull Mean Depth (ft)	0.5	0.6	0.5	0.5	0.5			1.1	1.0	1.0	0.9	0.9			1.5	1.5	1.5	1.3	1.3		
Bankfull Max Depth (ft)	1.0	1.0	1.0	1.1	1.1			2.1	2.0	2.0	2.1	2.1			2.8	2.8	2.9	2.8	2.8		
Bankfull Cross-Sectional Area (ft ²)	4.6	4.6	4.6	4.6	4.6			13.4	13.4	13.4	13.4	13.4			20.2	20.2	20.2	20.2	20.2		
Total Cross-Sectional Area (ft ²)	4.6	4.3	4.4	3.9	3.9			13.4	11.8	12.2	9.8	9.8			20.2	20.0	20.2	20.1	20.1		
Bankfull Width/Depth Ratio	17.0	14.8	15.9	20.7	20.7			-	-	-	-	-			-	-	-	-	-		
Bankfull Entrenchment Ratio	4.2	4.6	4.0	3.8	3.8			-	-	-	-	-			-	-	-	-	-		
Bankfull Bank Height Ratio	1.0	0.9	1.0	1.0	0.9			-	-	-	-	-			-	-	-	-	-		
d50 (mm)	24	18	2.5	41	-			-	-	-	-	-			-	-	-	-	-		
		C	ross-Se	ection 4	4 (Riffl	e)			C	ross-Se	ction 5	5 (Riffl	e)			C	ross-Se	ction 6	6 (Riffl	e)	
		S	Station	13+85	, UTCO	2 [´]			S	station	22+44	, UTCC	Ś				Statio	n 96+6	59, T3		
Baseline Bankfull Elevation:				666.93	,						656.55	·						656.12	,		
	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY
Bankfull Width (ft)	12.1	12.5	12.7	12.0	11.1			14.5	14.3	14.1	14.8	14.8			6.0	6.5	5.8	6.7	5.3		
Floodprone Width (ft)	_	>50	>50	>50	>50			>45	>45	>45	>45	>45			>30	>30	>30	>30	>25		
Bankfull Mean Depth (ft)		1.0	1.0	1.1	1.1			1.1	1.1	1.1	1.1	1.1			0.5	0.5	0.5	0.5	0.6		
Bankfull Max Depth (ft)		1.7	1.8	1.7	1.7			1.7	1.9	1.9	1.8	1.8			0.8	1.0	1.0	1.0	1.0		
Bankfull Cross-Sectional Area (ft ²)	12.6	12.6	12.6	12.6	12.6			15.8	15.8	15.8	15.8	15.8			3.1	3.1	3.1	3.1	3.1		
Total Cross-Sectional Area (ft ²)		13.8	12.6	13.3	14.1			15.8	15.7	16.6	14.6	14.6			3.1	3.2	3.0	3.2	2.7		
Bankfull Width/Depth Ratio		12.3	12.7	11.4	9.8			13.3	13.0	12.6	13.9	13.9			11.7	13.7	10.8	14.4	8.9		
Bankfull Entrenchment Ratio	4.6	4.5	4.1	4.7	4.7			3.1	3.2	3.2	3.1	3.1			4.4	4.1	4.6	3.9	5.0		
Bankfull Bank Height Ratio	1.0	1.0	0.9	0.9	1.0			1.0	1.0	1.0	1.0	1.0			1.0	0.9	0.9	0.9	0.9		
d50 (mm)	33	49	40	18	-			31	40	69	26	-			41	41	54	15	-		

Bank Height Ratios are calculated based on the baseline (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section parameters are calculated based on the current year's low bank height.

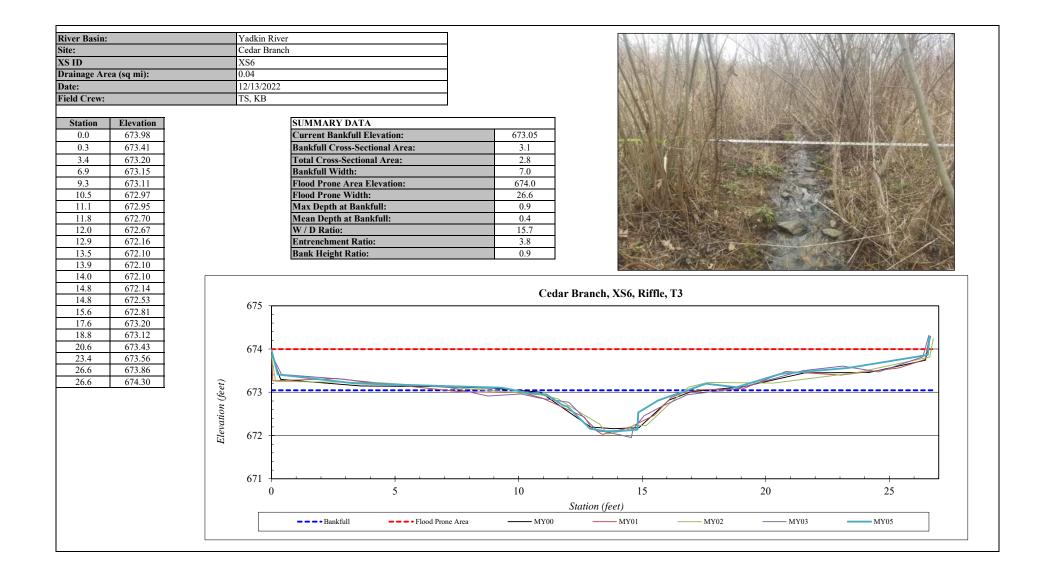

Fable 9. Cross-Section Morphology Data Table Cedar Branch Stream Restoration Site, DMS Pa		407000																			
Leuar Branch Stream Restoration Site, DMS P	l		Cross-S	antion	7 (Doo	1)			C	roog Ca	ation () (Diff	2)	I		C	ross-Se	ation) (Diff	2)	
Dimension and Substrate		C			`	1)		Cross-Section 8 (Riffle) Station 99+25, T3										· ·	/		
				n 99+(,							25, 15				2	Station		, UICC	<i>,</i>	
Baseline Bankfull Elevation:	D	1.611		666.60		1077	1.07.	D	1071		665.93	1015			D	3 (771		657.32	1012) (775	1.0
D 1 C 11 W/ 14 (0)	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY
Bankfull Width (ft)		8.9	8.5	9.1	10.2			6.0	5.6	6.1	5.4	5.4			13.2	13.0	13.8	13.6	13.6		<u> </u>
Floodprone Width (ft)		-	-	-	-			>30	>30	>30	>30	>30			>40	>40	>40	>40	>40		<u> </u>
Bankfull Mean Depth (ft)		0.8	0.8	0.8	0.7			0.4	0.4	0.4	0.5	0.5			1.0	1.0	0.9	1.0	1.0		<u> </u>
Bankfull Max Depth (ft)	1	1.6	1.7	1.7	1.6			0.7	0.9	0.9	0.8	0.8			1.8	1.8	2.0	1.9	1.9		┝──
Bankfull Cross-Sectional Area (ft ²)		6.9	6.9	6.9	6.9			2.5	2.5	2.5	2.5	2.5			13.0	13.0	13.0	13.0	13.0		\vdash
Total Cross-Sectional Area (ft ²)	-	8.7	7.2	7.6	6.8			2.5	2.7	2.7	2.3	2.3			13.0	12.0	12.7	12.1	12.1		
Bankfull Width/Depth Ratio		-	-	-	-			14.1	12.6	14.8	11.5	11.5			13.3	12.9	14.7	14.3	14.3		\vdash
Bankfull Entrenchment Ratio		-	-	-	-			5.0	5.4	4.9	5.7	5.7			3.4	3.5	3.2	3.3	3.3		<u> </u>
Bankfull Bank Height Ratio		-	-	-	-			1.0	1.1	1.0	1.0	1.0			1.0	0.9	1.0	0.9	1.0		┣──
d50 (mm)	-	-	-	-	-			40	18	29	10	-			57	50	48	34	-		
			oss-Se		· ·	le)			Ci			l 1 (Poo	l)				oss-Sec		·	le)	
			Station	n 252+	25, T4					Station	n 225+	97, T4					Statior	n 226+	04, T4		
Baseline Bankfull Elevation:				666.93							656.55							656.12			
	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY
Bankfull Width (ft)	7.0	8.7	7.2	7.9	7.9			10.2	9.6	10.0	9.9	9.9			6.7	6.9	7.0	7.3	7.3		
Floodprone Width (ft)	>30	>30	>30	>35	>35			-	-	-	-	-			>30	>30	>30	>30	>30		
Bankfull Mean Depth (ft)	0.5	0.4	0.5	0.4	0.4			1.1	1.1	1.1	1.1	1.1			0.5	0.5	0.5	0.5	0.5		
Bankfull Max Depth (ft)	0.8	1.0	1.0	1.0	1.0			2.1	2.0	2.0	2.1	2.1			0.8	0.8	0.9	0.8	0.9		
Bankfull Cross-Sectional Area (ft ²)	3.3	3.3	3.3	3.3	3.3			10.8	10.8	10.8	10.8	10.8			3.5	3.5	3.5	3.5	3.5		
Total Cross-Sectional Area (ft ²)	3.3	3.0	2.4	2.4	2.4			10.8	11.9	11.6	11.6	11.6			3.5	3.8	3.1	2.7	2.7		
Bankfull Width/Depth Ratio		23.0	15.7	18.9	18.9			-	-	-	-	-			12.9	13.6	14.1	15.3	15.3		
Bankfull Entrenchment Ratio	5.1	4.1	5.0	4.5	4.5			-	-	-	-	-			4.7	4.6	4.5	4.3	4.3		
Bankfull Bank Height Ratio	1.0	0.9	1.0	1.0	1.0			-	-	-	-	-			1.0	1.0	1.0	1.0	0.9		
d50 (mm)	42	36	6	6	-			-	-	-	-	-			45	32	22	24	-		

Bank Height Ratios are calculated based on the baseline (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section parameters are calculated based on the current year's low bank height.

Table 9. Cross-Section Morphology Data Tables Cedar Branch Stream Restoration Site, DMS Project #97009 Cross-Section 14 (Riffle) Cross-Section 13 (Riffle) Cross-Section 15 (Pool) **Dimension and Substrate** Station 35+12, UTCC Station 41+94, UTCC Station 42+58, UTCC Baseline Bankfull Elevation: 645.24 637.94 637.43 Base MY1 MY2 MY3 MY5 MY7 MY+ Base MY1 MY2 MY3 MY5 MY7 MY+ Base MY1 MY2 MY3 MY5 MY7 MY+ Bankfull Width (ft) 12.7 13.8 12.5 13.0 15.3 13.9 14.3 22.5 20.8 31.3 13.1 13.8 14.3 20.7 21.4 Floodprone Width (ft) >50 >50 >45 >40 >40 >40 >40 >50 >50 >40-----Bankfull Mean Depth (ft) 0.7 0.9 0.9 0.9 0.8 0.7 0.7 0.8 0.8 0.9 1.6 1.7 1.7 1.7 1.1 Bankfull Max Depth (ft) 1.5 1.7 1.7 3.2 3.2 1.4 1.4 1.5 1.4 1.7 1.7 1.7 3.4 3.3 3.2 9.6 9.6 9.6 9.6 12.8 12.8 12.8 12.8 12.8 35.8 35.8 35.8 35.8 9.6 35.8 Bankfull Cross-Sectional Area (ft² 8.5 12.2 Total Cross-Sectional Area (ft² 9.6 7.9 7.8 6.8 12.8 12.6 14.3 12.2 35.8 32.8 36.2 32.8 29.0 Bankfull Width/Depth Ratio 16.7 19.8 17.8 16.3 17.7 18.3 15.1 14.8 16.0 16.0 ---Bankfull Entrenchment Ratio 3.8 3.5 3.7 3.9 3.7 2.8 3.1 3.1 3.0 3.0 -----Bankfull Bank Height Ratio 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.2 1.2 -_ --d50 (mm) 13 51 42 23 16 13 61 -61 --

Bank Height Ratios are calculated based on the baseline (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section parameters are calculated based on the current year's low bank height.

Cross-Section Plots



ver Basin:	Yadkin River
e:	Cedar Branch
ID	XS2
ainage Area (sq mi):	0.05
te:	12/13/2022
ld Crew:	TS, KB
Station Elevation	SUMMARY DATA
0.0 686.86	Current Bankfull Elevation: 686.32
0.1 686.19	Bankfull Cross-Sectional Area: 13.4
4.1 686.23	Total Cross-Sectional Area: 9.4
11.7 686.14	Bankfull Width: 13.0
15.6 686.03	Flood Prone Area Elevation:
17.0 685.99	Flood Prone Width:
18.3 685.82	Max Depth at Bankfull: 2.0
20.1 685.52	Mean Depth at Bankfull: 1.0
21.2 685.27	W / D Ratio:
22.1 684.93	Entrenchment Ratio:
22.5 684.73	Bank Height Ratio:
23.2 684.65	
24.2 684.41	
25.3 684.36	Cedar Branch, XS2, Pool, T1
25.9 684.47	688
26.3 684.78	
27.0 685.43	
27.8 685.79	687
28.6 686.03	
31.3 685.95	
34.7 686.00	686
35.8 686.08	
	8
	685
	685 (see)
	0 5 10 15 20 25 30 35
	Station (feet)
	Bankfull Flood Prone Area MY00 MY01 MY02 MY03 MY05

River Basin: Site: XS ID Drainage Ard Date: Field Crew:		Yadkin River Cedar Branch XS3 0.21 12/13/2022 TS, KB
Station 0.0 0.0 6.1 11.4 14.0 15.5 16.4 17.0 17.7 18.0 19.0 19.6	Elevation 676.77 676.27 676.18 676.23 676.15 676.15 676.17 675.33 675.08 674.35 673.38	SUMMARY DATACurrent Bankfull Elevation:675.95Bankfull Cross-Sectional Area:20.2Total Cross-Sectional Area:21.3Bankfull Width:13.9Flood Prone Area Elevation:Flood Prone Width:Max Depth at Bankfull:3.0Mean Depth at Bankfull:1.5W / D Ratio:Entrenchment Ratio:Bank Height Ratio:
20.4 21.3 22.0 22.9 24.2 24.8 25.2	672.99 673.04 673.25 673.54 674.03 674.41 674.90	Cedar Branch, XS3, Pool, UTCC
25.6 26.5 28.1 30.0 32.4 37.3 42.9 48.2	675.26 675.32 675.73 675.98 675.97 675.98 675.11 676.06	676 675 674 673
48.2	676.76	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

iver Basin:		Yadkin River
ite:		Cedar Branch
S ID		XS4
rainage Ar	rea (sq mi):	0.21
ate:		12/13/2022
eld Crew:		TS, KB
Station	Elevation	SUMMARY DATA
0.0	676.15	Current Bankfull Elevation: 675.65
0.0	675.48	Bankfull Cross-Sectional Area: 12.6
5.8	675.68	Total Cross-Sectional Area: 14.5
12.7	675.85	Bankfull Width: 11.9
19.4	675.72	Flood Prone Area Elevation: 677.3
21.8	675.79	Flood Prone Width: 51.8
22.6	675.72	Max Depth at Bankfull: 1.7
23.6	675.66	Mean Depth at Bankfull: 1.1
24.5	675.31	W / D Ratio: 11.3
25.5	674.74	Entrenchment Ratio: 4.3
26.3	674.36	Bank Height Ratio: 1.0
26.8	674.16	
27.4	674.16	
28.4	674.05	Cedar Branch, XS4, Riffle, UTCC
29.3	674.00	678
30.1	674.02	
30.7	674.05	
31.4	674.19	677
32.5	674.36	
33.2 34.8	674.90 675.48	
35.8	675.72	676
35.8	675.84	Elevation (feet)
38.5	675.86	
44.2	675.91	اقِي 675
49.0	676.02	
51.8	676.06	
-		
		0 10 20 30 40 50
		Station (feet)
		BankfullFlood Prone Area

ver Basin:		Y	adkin Riv	ver								
e:		С	edar Bran	ich				Test Marken	NACE AND	NY ALAN		A JANNA
ID		X	S5					locioles 1	N. CONVERSION	SALVAR DAT		1992
ainage Ar	rea (sq mi):	0.	21					A State	I-LAW AND	The Zon Life An	A MARKEN AND AND A	
te:	· - ·	12	2/13/2022						11. SAMAANI	×2/3 5		四、清水出品引
ld Crew:		T	S, KB					CALLER .		ONTU AN	的法律的问题。	TO TRACT
		•						11/16		AND SALASSE	ALL SALAN PLAN	1 PARA
station	Elevation			SUMMARY DATA	1			111 12 13	a the kitter a start	N. M. Marris	STATING THE	A to be
0.0	663.27			Current Bankfull E	Clevation:		662.97	141-14	Caller - Maria	191 haven	5 10 5 5 6	(不同)等了(子)
0.0	662.75			Bankfull Cross-Sec	tional Area:		15.8		A State			
5.2	662.98			Total Cross-Section	nal Area:		15.6				an entry	See 1
10.5	663.11			Bankfull Width:			14.2			VE Statest	Taking to the	
13.4	663.03			Flood Prone Area F	Elevation:		664.8	A DECEMBER OF A	A LOOK ANY	1. La de tra	The age of the	See 1
15.0	663.06			Flood Prone Width			45.3			AST I'M	A THE REAL	AS Sto
15.8	662.84			Max Depth at Bank	cfull:		1.8	A. C. A.	CAR AND	2 Proto	State Barrie	The star
16.3	662.66			Mean Depth at Ban			1.1	and the second	All And	a state of the		
17.6	662.15			W / D Ratio:			12.8	all a line	SKIN SA	A la	A set	ALL PAC
19.2	661.67			Entrenchment Rati			3.2		A TEST	P. P. AV		
20.1	661.40			Bank Height Ratio:			1.0		A BENERAL	And a start of the	A TOMPOST	and the second
20.8	661.23								1 alt		- DORING C	and said
22.0	661.20											
22.6	661.18						Cedar B	ranch, XS5, Riffle	UTCC			
23.2	661.21		665 —				ecual D		,0100			
23.7	661.26											
24.4	661.32		-									
25.0	661.35		664 -									
25.6	661.69		-									1
27.3	662.21											
28.8 29.8	662.67		663 -									
29.8 30.9	663.10 662.88	eet	F									
35.4	663.06	%	Ę									
40.2	663.23	tion	662						<i>(</i>			
45.2	663.37	Elevation (feet)	-									
45.3	663.74	Ele										
			661					~				
			ţ.									
			660									
			000	5	10	15	20	25	30	35	40	45
			0	3	10	15			50	33	40	43
							Ste	ation (feet)				
				Bankfull	Flood Prone	- Area	MY00	MY01	MY02	MY03	MY05	
		1	1									

River Basin: Site:			ıdkin River dar Branch					XNN	
XS ID		XS				13/11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ALCONTRACT OF		A
Drainage Ar	ea (sq mi):	0.0)4				N M N	HASTER & VORD	
Date:		12	/13/2022			Var SVI			1. 4
Field Crew:		TS	S, KB				CALT AND	Real of the second	1 Standard
							C Shipperson	SHO IN	17 4 M
Station	Elevation		SUMMARY DATA				2 1 Conton		The strain in
0.0	667.87		Current Bankfull Ele	vation:	666.61		S STURATING THE	The second second	and the second second
0.0	667.27		Bankfull Cross-Section	nal Area:	6.9	A Constant of A	N TACE		A BANK
3.2	667.11		Total Cross-Sectional	Area:	6.8			Carlo H.	
6.5	666.79		Bankfull Width:		10.2	A all and			100/ 2
9.3	666.78		Flood Prone Area Ele	vation:		A TARAS		11×	11/52 5
10.3	666.63		Flood Prone Width:				治病产		
11.1	666.49		Max Depth at Bankfu		1.6		X	Real Providence	
11.9	666.22		Mean Depth at Bank	ull:	0.7			States of States of States	12 2 2
12.5	666.11		W / D Ratio:				POP. WARDS		No VI
13.1	666.00		Entrenchment Ratio:			Contraction in the	A IDAX		S. 💎
13.3	665.74		Bank Height Ratio:						and the s
13.9	665.10								12511
14.4	665.15								
15.3	665.05				Cedar Branch	n, XS7, Pool, T3			
16.0	665.13		669						
16.8	665.75		-						
17.1 17.8	666.12 666.17								
17.8	666.37		668						
20.3	666.57		A						
20.3	666.70								
24.5	666.66		667						
24.3	667.04	eet							
32.0	667.38	u ()							
34.5	667.62	tion	666	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		y			
34.5	668.08	Elevation (feet)	-						
	<u>. </u>	Ele	665						
			F						
			664 +						
			0 5	10	15	20	25	30	35
			0 5	10			20	50	55
					Station (
			— — – • Bankfull	MY00	MY01	—— MY02	—— MY03	MY05	
i			L						

iver Basin:			Yadkin Riv		
ite:			Cedar Bran	nch	4
S ID			XS8	A STATE OF A	1
rainage Are	ea (sq mi):		0.04		-
ate:			12/13/2022	2	
ield Crew:			TS, KB		20
a					
Station	Elevation			SUMMARY DATA	
0.0	666.80			Current Bankfull Elevation: 666.02	and a second
0.1	666.21			Bankfull Cross-Sectional Area: 2.5	Sp.
3.6	666.09			Total Cross-Sectional Area: 2.0	
6.6	666.09			Bankfull Width: 7.2	
8.5	666.03			Flood Prone Area Elevation: 667.0	
12.4	666.01			Flood Prone Width: 31.2	Y
13.4 14.6	666.00 665.91			Max Depth at Bankfull: 0.9 Mean Depth at Bankfull: 0.4	1-1
14.6	665.91			Mean Depth at Banktun: 0.4 W / D Ratio: 20.3	
15.4	665.27			Entrenchment Ratio: 4.3	-
15.4	665.11			Bank Height Ratio: 0.9	11
16.3	665.09				
16.7	665.24				
16.9	665.39			Codex Dreamsh VS9 Diffs T2	
17.2	665.50		((0)	Cedar Branch, XS8, Riffle, T3	
18.4	665.77		⁶⁶⁹ F		
18.8	665.81		ţ		
19.8	665.97		668		
21.2	666.07		-		
24.3	666.29		Ę		
28.8	666.67		667		
30.9	666.88	ot	3		
33.0	667.46	(fo.	5 🚺		
34.0	667.61	20	5 666 🗕		
34.1	667.99	Elevation (fast)	i j		
		tol?			
		4	665		
			ŀ		
			cca F		
			664 +	5 10 15 20 25 30 3 ⁴	-
			0		,
				Station (feet)	
				BankfullFlood Prone Area	

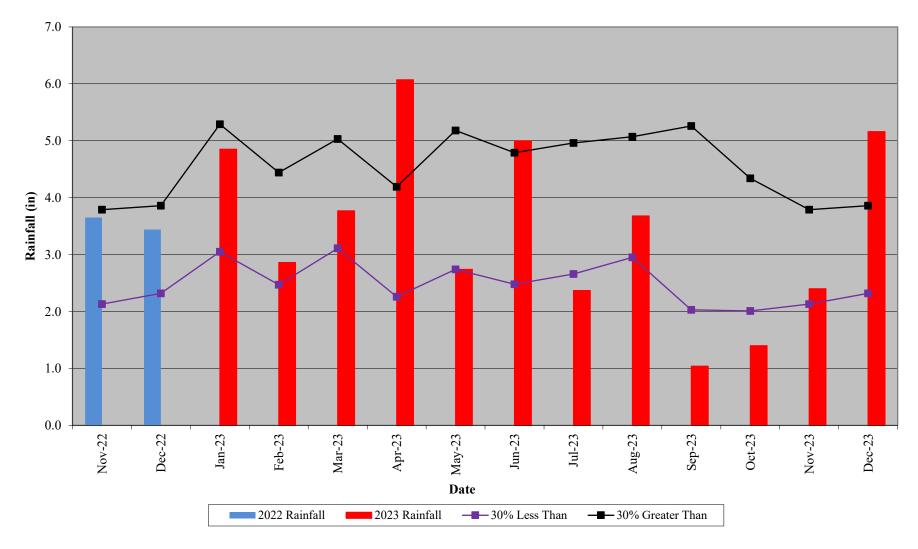
River Basin:			Yadkin Rive									
Site:			Cedar Brand					S S S S S S S S S S S S S S S S S S S				1. 10
XS ID			XS9					ALC AN	R AR BARRAN		語。[#·]]和《《》	
Drainage Area (sq 1	ni)•		0.28						N. C. Station	PERSONAL PROPERTY.	REPAIRS A CAR	Carl Star
Dramage Area (sq 1 Date:	<i>.</i>		12/14/2022						A MARK AN			5 A
Field Crew:			TS, KB					ALLER VELL	A SALAN AND			6 25
Field Crew.			15, KD					North H	1 Martis			1.2
Station Elev	ation			SUMMARY DATA				1 2 3 1	ALL MARKERS	all parts		
	7.89			Current Bankfull El		65	57.36			F Charles		1 3
0.1 65	7.45			Bankfull Cross-Secti	onal Area:		13.0	3 2 1	AL 1722	AR ARCA		
5.0 65	7.41			Total Cross-Sectiona	ll Area:		12.5	的 人们不可能。	THE REAL PROPERTY AND	enter the	West All	
	7.32			Bankfull Width:			14.7	TO A	111 400 400		Standing 10	IS Z
13.0 65	7.35			Flood Prone Area El	evation:	6	59.2		ME ALL	A State		
	7.36			Flood Prone Width:			45.0			A States	Contraction of the second seco	ALL AN
15.4 65	7.27			Max Depth at Bankf	ull:		1.9		P State Party	Sel Sel	Salver Tax	
16.3 65	7.20			Mean Depth at Bank	cfull:		0.9	in the			A Start A CAR	
	5.97			W / D Ratio:			16.5	and the second	States -	and the second second	A Carlo Ana	1
	5.57			Entrenchment Ratio	:		3.1		THE ME	and and		Const.
	5.18			Bank Height Ratio:			1.0	A Parto	- Selent			- 20 ¹
	5.78											
	5.71											
	5.53						Cedar Bran	ch, XS9, Riffle,	UTCC			
	5.47		660 —				otun bin	••••,••••,•••••,•				
	5.59											
	5.74		-									
	5.82		659									
	5.65		_									
	7.26		-									1.1
	7.67 7.63		658									
		et	Ň									
	7.72 7.68	C										
	7.72	ion	657 —									
44.8 65		Elevation (feet)	F						/			
-15.0 05		Ele	,									
			656					A				
			-									
			(FF -					~				
			655		10	15	20	25	20	25	40	45
			0	5	10	15		25	30	35	40	45
							Statio	n (feet)				
				Bankfull	Flood Prone A	Area —	MY00	MY01	MY02	MY03	MY05	
	1											

River Basin: Site: XS ID Drainage Area (sq mi): Date: Field Crew:		Yadkin River Cedar Branch XS10 0.05 12/14/2022 TS, KB					A Pro	
Station Elevatio 0.0 667.40 0.0 666.96 4.3 667.14 9.1 667.15 11.0 667.08 11.9 667.12 13.0 666.83 13.5 666.73 14.6 666.31 16.0 666.42 17.0 666.64 18.7 666.78 19.0 667.08 20.3 667.10 23.6 667.13 35.4 667.41 35.8 667.94	Elevation (feet)	669 667 666 666	l Elevation: ectional Area: ional Area: a Elevation: th: nkfull: ankfull: ankfull:	667.09 3.3 2.2 7.0 667.9 35.7 0.8 0.5 15.0 5.1 1.0 Cedar Bran	ch, XS10, Riffle, T4			
		665	5 10	15	20	25	30	35
					n (feet)			
		Bankfull	Flood Prone Area	MY00	MY01	MY02	MY03 N	1Y05

River Basin: Site: XS ID Drainage Area (sq mi): Date: Field Crew:	Yadkin River Cedar Branch XS11 0.05 12/14/2022 TS, KB
Station Elevation 0.0 657.03 0.1 656.57 4.4 656.69 8.4 656.58 10.6 656.51 12.2 656.20 13.0 656.18 13.6 655.83 14.5 655.26 15.5 654.71 16.6 654.57	SUMMARY DATACurrent Bankfull Elevation:656.39Bankfull Cross-Sectional Area:10.8Total Cross-Sectional Area:12.4Bankfull Width:9.5Flood Prone Area Elevation:Flood Prone Width:Max Depth at Bankfull:1.1W / D Ratio:Bank Height Ratio:
$\begin{array}{c ccccc} 17.0 & 654.51 \\ \hline 18.0 & 654.52 \\ \hline 19.2 & 654.65 \\ \hline 20.0 & 655.37 \\ \hline 20.1 & 655.83 \\ \hline 21.6 & 656.53 \\ \hline 21.8 & 656.64 \\ \hline 22.9 & 656.67 \\ \hline 24.8 & 656.58 \\ \hline 26.5 & 656.57 \\ \hline 29.1 & 656.99 \\ \hline 29.1 & 657.51 \\ \hline \end{array}$	Cedar Branch, XS11, Pool, T4
	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Effect Crea: TS, KB Notion Restation 0.0 656.04 0.0 656.01 0.6 656.01 0.6 656.01 0.6 656.01 0.7 656.01 0.8 656.01 12.2 656.01 12.2 656.01 12.2 656.01 13.7 655.55 14.4 655.55 14.4 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.7 656.17 17.9 655.41 16.1 656.23 31.4 656.23 31.4 656.23 31.4 656.23	River Basin: Site: XS ID Drainage Area (sq mi):	Yadkin River Cedar Branch XS12 0.05
Intervention Intervention 0.0 65654 0.6 65650 0.6 65650 0.6 65650 0.6 65650 0.6 65650 0.6 65650 0.6 65660 0.6 65660 0.6 65670 128 65661 139 65535 144 65537 156 65531 161 65541 162 65541 164 65537 172 65541 165 65531 161 65541 162 65541 163 65541 164 65541 165 65531 161 65541 162 65541 164 65541 164 65541 164 65541 164 65541 164 65641	Date:	12/14/2022
0.0 656.94 0.0 656.90 0.6 656.91 0.6 656.91 0.6 656.91 0.7 656.01 0.8 656.01 0.9 656.01 0.2 656.01 0.2 656.01 0.2 656.01 0.2 656.01 0.2 656.01 0.2 656.01 0.2 656.01 0.2 656.01 0.3 656.01 0.3 655.01 0.3 655.01 0.3 655.01 0.3 655.01 0.4 655.01 0.5 10 0.6 655.01 0.6 655.01 0.6 655.01 0.6 655.01 0.6 655.01 0.6 655.01 0.7 656.01 0.7 656.01 0.7 656.01 0.7 656.01 0.7 656.01 <th>Field Crew:</th> <th>TS, KB</th>	Field Crew:	TS, KB
0 5 10 15 20 25 30 <i>Station (feet)</i>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eurrent Bankfull Elevation: 656.19 Bankfull Cross-Sectional Area: 3.5 Total Cross-Sectional Area: 657.0 Flood Prome Vtath: 0.5 Wind Bankfull: 0.8 Wind Ratio: 14.0 Entrenchment Ratio: 10.0 Cedar Branch, XS12, Riffle, T4 1000000000000000000000000000000000000
		0 5 10 15 20 25 30
Bankfull General Area MY00 MY01 MY02 MY03 MY05		

River Basin:			Ya	dkin Rive	r								
Site: XS ID			Ce	dar Branc	h					ALL TANK	1 Mar Alexan	S. 4 . 4 . 10 .	A REAL AND
		XS	XS13						Marth 10 Mile	La Antonia Antonia			
Drainage Ar	ea (sq mi):		0.4	1						A STATE AND	1 Hans	Carl IX I H	A TANK A TA
Date:			12/	/14/2022						C-CIANA		War Vanda	A PARTY AND
ield Crew:			TS	, KB			1			ATT A	A HAR MAR	1230 18 20 18	and the set of
										and have been a	19/2 11/200	A AND AND	
Station	Elevation				SUMMARY DATA	4			4020	1. 1.	N GE	the season	
0.0	646.09				Current Bankfull H	Elevation:		645.47	-	AN AND AND A	1 1 1 1 3	AND AND A	Contraction of the
-0.1	645.72				Bankfull Cross-Sec	ctional Area:		9.6	The second	The second			
4.6	645.66				Total Cross-Section	nal Area:		6.8	CHART ST	17. Start 100			THE AND IN
8.3	645.62				Bankfull Width:			13.0		- Aller -			
11.9	645.62				Flood Prone Area	Elevation:		646.9	12		to the factor	- The Constitution - And	
12.9	645.39				Flood Prone Width			48.5		the and a	S. 19 Jan	and the second	The Ism See
13.4	645.35				Max Depth at Banl	kfull:		1.4			A Contraction		Tool I'm I'm
14.1	645.35				Mean Depth at Bai	nkfull:		0.7	1		A Same		
14.5	645.64				W / D Ratio:			17.7	a stat	12 100 18	al Carrie		No Ar
15.9	645.60				Entrenchment Rati			3.7	and the second		Real Contraction	1 2 20 8	
16.6	645.46				Bank Height Ratio	:		1.1	147	EST IN	Salar and	A LA MADE	The set
17.8	645.15										AND DEPARTATION OF	n h	
18.6	645.16												
20.5	644.63							Cedar B	ranch, XS13, F	Riffle UTCC			
21.7	644.50		6	548 —					ranch, A515, N				
22.2	644.27		(
22.9	644.11			Ē									
23.4	644.03		6	547									
24.1	644.05		,	··/ [
24.6	644.04			F									
25.1	644.28		6	546 —									
25.9	644.19		(ta										
26.3	644.82		Elevation (feet)	-									
28.1	645.20		uo e	545 🗕									
29.6	645.48		àti	Ē						-			
30.4	645.82		ller	t t									
33.5 40.4	645.87 645.99		ч (544 于									
40.4	645.99			F					-				
45.4	646.18												
48.4	646.72		6	543 🕂								· · · · · · ·	
40.3	040.72			0	5	10	15	20	25	30	35	40	45
								Si	ation (feet)				
									v /				
					Bankfull	Flood P	rone Area		MY01	—— M	Y02 —	MY03	MY05

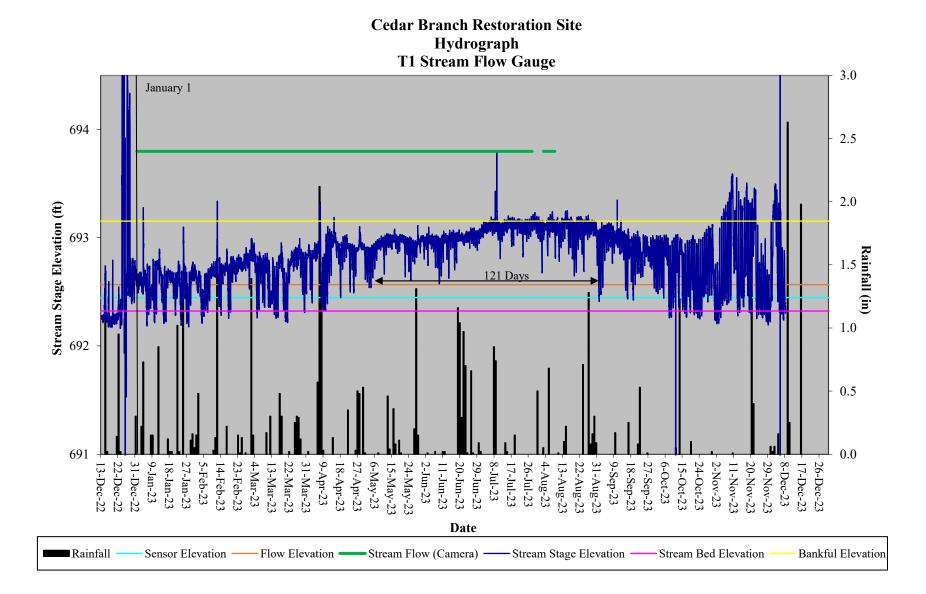

iver Basin:		Yadkin River
Site:		Cedar Branch
(S ID		XS14
ainage Ar	ea (sq mi):	0.41
te:		12/14/2022
ld Crew:		TS, KB
Station	Elevation	SUMMARY DATA
0.0	638.84	Current Bankfull Elevation: 638.02
0.2	638.52	Bankfull Cross-Sectional Area: 12.8
4.5	638.50	Total Cross-Sectional Area: 11.7
8.2	638.36	Bankfull Width: 14.0
11.8	638.36	Flood Prone Area Elevation: 639.7
12.7	638.37	Flood Prone Width: 43.7
13.6	638.21	Max Depth at Bankfull: 1.7
15.3	637.90	Mean Depth at Bankfull: 0.9
16.7	637.67	W / D Ratio: 15.3
17.9	637.24	Entrenchment Ratio: 3.1
18.1	636.99	Bank Height Ratio: 1.2
19.1	636.56	
19.9	636.56	
20.3	636.44	Cedar Branch, XS14, Riffle, UTCC
21.6	636.44	
22.1	636.46	
22.8	636.66	
23.1	636.84	
23.6	636.83	639
23.9	636.95	
24.9	637.42	
25.2 27.2	637.56 638.07	638 637
27.2	638.07	
30.4	638.42	
34.8	638.50	
39.9	638.49	
43.4	638.56	
43.7	639.05	
	000,000	
		Station (feet)
		BankfullFlood Prone Area

River Basin: Site: XS ID Drainage Area (sq mi): Date:	Yadkin River Cedar Branch XS15 0.41 12/14/2022
Station Elevation 0.0 638.15 -0.1 637.87 6.1 637.52 9.5 637.84 11.6 637.68 12.5 637.77 13.1 637.69 14.4 636.98 15.7 635.96 16.8 635.35 18.1 634.58 19.1 634.72	TS, KBSUMMARY DATACurrent Bankfull Cross-Sectional Area:637.55Bankfull Cross-Sectional Area:35.8Total Cross-Sectional Area:33.3Bankfull Width:20.5Flood Prone Area Elevation:Flood Prone Vidth:Max Depth at Bankfull:3.1Mean Depth at Bankfull:1.7W / D Ratio:Bank Height Ratio:
20.3 634.58 22.5 634.73 23.6 635.03 24.7 635.43 25.6 636.04 28.7 636.68 31.3 637.10 33.6 637.67 34.6 637.68 37.3 637.80 42.5 637.69 49.0 637.75 49.2 638.31	Cedar Branch, XS15, Pool, UTCC
	634 + + + + + + + + + + + + + + + + + + +

APPENDIX E

Hydrologic Data

Cedar Branch Restoration Site 30-70 Percentile Graph WETS Station Name: Asheboro, NC


Table 10. Verification of Bankfull Events Cedar Branch Restoration Site, DMS Project #97009									
Gage ID	MY1 2018	MY2 2019	MY3 2020	MY4 2021	MY5 2022	MY6 2023	MY7 2024		
UTCC	5	15	17	9	8	0*			

*Gauge Malfunction

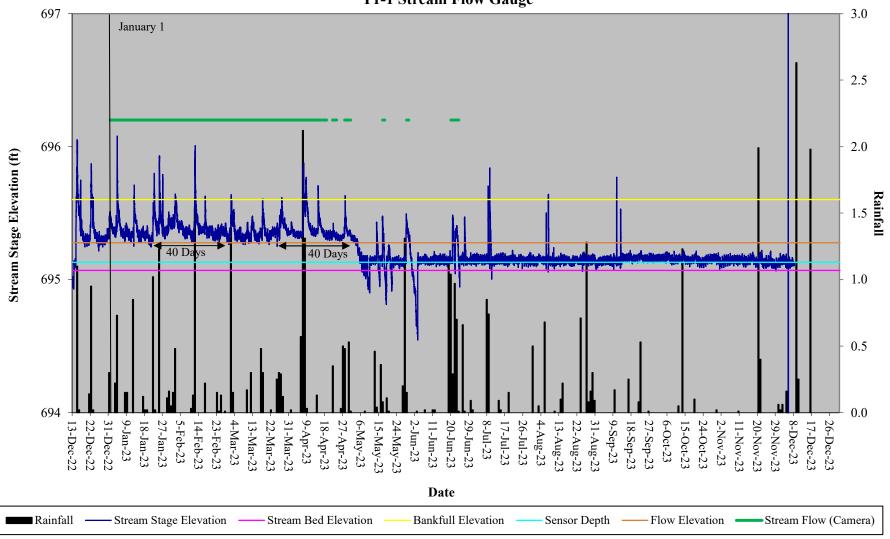
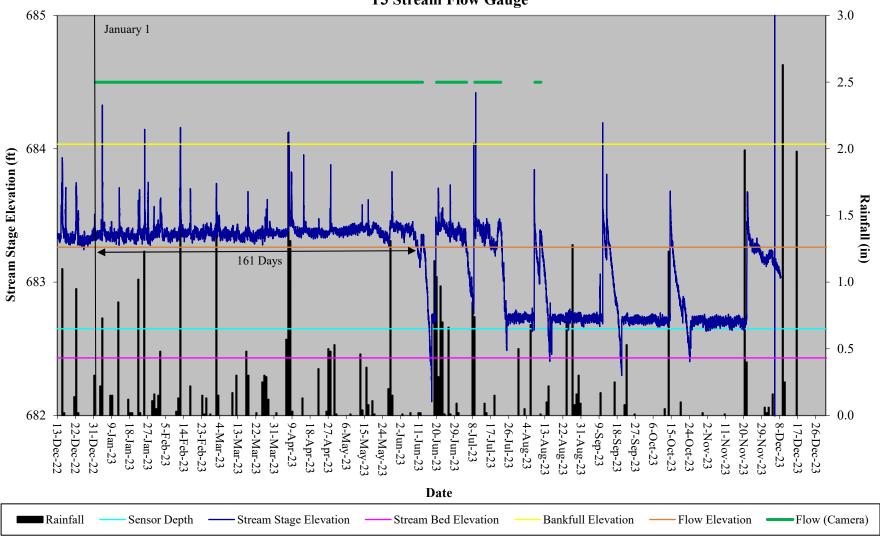
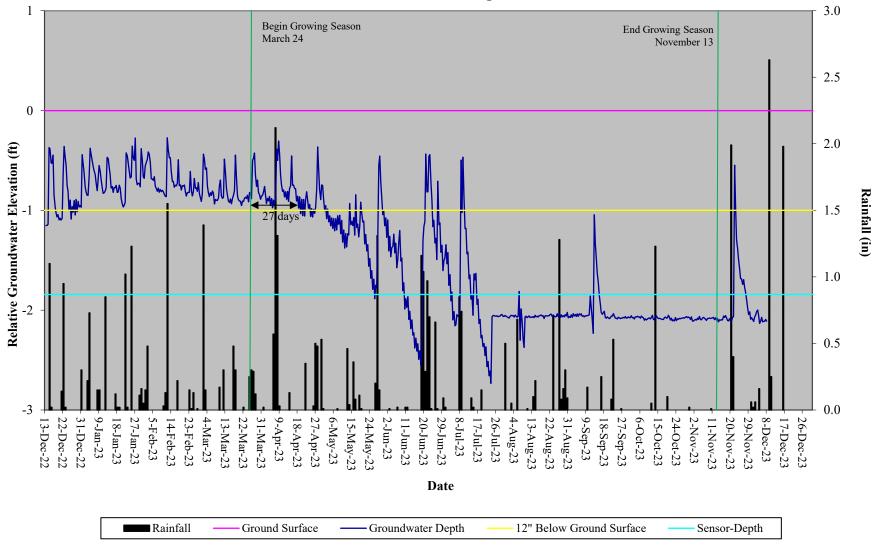

	Table 11. Verification of Stream FlowCedar Branch Restoration Site, DMS Project #97009									
	Gauge Camera									
Reach	Dates Achieving	Maximum Consecutive Days	Dates Achieving	Maximum Consecutive Days						
T1	May 3 – September 1	121	January 1 – July 28	209						
T1-1	January 21 – March 1; March 25 – May 3	40	January 1 – April 19	109						
T3	January 1 – June 10	161	January 1 – June 13	164						

	Table 12. Stream Flow Criteria Attainment Cedar Branch Restoration Site, DMS Project #97009										
	e Days										
Reach	MY-01 2018	MY-02 2019	MY-03 2020	MY-04 2021	MY-05 2022	MY-06 2023	MY-07 2024				
T1 (Gauge)	Yes/60	Yes/46	Yes/142	Yes/242	No/3	Yes/121					
T1 (Camera)	Yes/102	Yes/260	Yes/189	Yes/178	Yes/147	Yes/209					
T1-1 (Gauge)	No/16	Yes/66	Yes/65	Yes/87	No/17	Yes/40					
T1-1 (Camera)	No/7*	Yes/105	Yes/63	No/7*	Yes/115	Yes/109					
T3 (Gauge)	Yes/83	Yes/187	Yes/65	Yes/86	Yes/49	Yes/161					
T3 (Camera)	Yes/93	Yes/252	Yes/174	Yes/61	Yes/173	Yes/164					


*camera malfunction

Cedar Branch Restoration Site Hydrograph T1-1 Stream Flow Gauge



Cedar Branch Restoration Site Hydrograph T3 Stream Flow Gauge

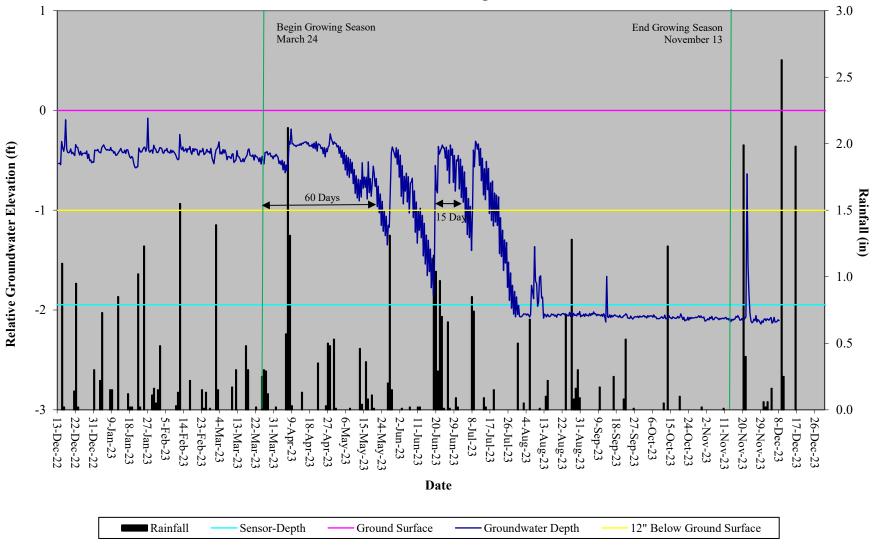
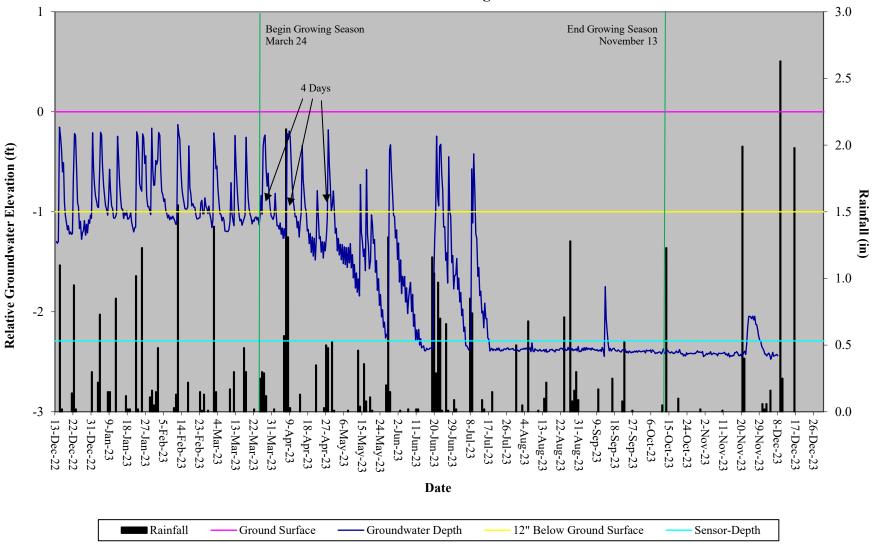


Table 13. Wetland Hydrology Verification Cedar Branch Restoration Site, DMS Project #97009												
	Max Consecutive Days During Growing Season (Percentage)											
Gauge #	Location	MY-01 2018	MY-02 2019	MY-03 2020	MY-04 2021	MY-05 2022	MY-06 2023	MY-07 2024				
Gauge 1	T1	64 (27.4%)	63 (26.7%)	55 (23.3%)	57 (24.1%)	3 (1.9%)	27 (11.3%)					
Gauge 2	Т3	104 (44.4%)	148 (63.2%)	119 (50.9%)	65 (27.6%)	103 (44.0%)	60 (25.4%)					
Gauge 3	Т3	21 (9.0%)	26 (10.9%)	13 (5.3%)	21 (9.0%)	18 (7.7%)	4 (1.7%)					


Cedar Branch Restoration Site Hydrograph Wetland Gauge 1

Cedar BranchRestoration Site Hydrograph Wetland Gauge 2

Cedar Branch Restoration Site Hydrograph Wetland Gauge 3

APPENDIX F

Additional Data

ROY COOPER Governor ELIZABETH S. BISER Secretary MARC RECKTENWALD Director

June 2, 2023

Matthew Reid *Project Manager* NCDEQ - Division of Mitigation Services Asheville Regional Office 2090 U.S. 70 Highway Swannanoa, NC 28778-8211

Subject: Boundary Inspection Report – MY6 Cedar Branch, Randolph County, NC; DMS ID No. 97009

Paul,

The MY6 boundary inspection was conducted by DMS on June 1, 2023. The inspection was conducted in accordance with the DMS Property Checklist which included an office review and a site visit to document site conditions. The entire easement boundary was inspected during the site visit to validate easement integrity and identify any potential issues on the site. This report summarizes the inspection results.

Office Review:

- The plat shows internal fencing within the easement in northeast section of the site and was not called out to be removed. The fencing is absent in the As-built figures.
- The MY5 report indicated trash, tires, a metal hay bale feeder and concrete blocks at the top of T1. A section of damaged fence was identified at sta: 17+00. The report also indicated the provider would be addressing the issues.

Field Inspection:

- The easement corners were monumented with stamped aluminum caps.
- All corner and in-line markings were within specification except for one in-line marker post near platted corner #24 which was loose.
- The internal fencing shown on the plat had been removed.
- The trash, hay bale and damaged fence identified in the MY5 report appear to be unresolved.
- No mowing, row crop or livestock encroachments were observed.
- The section of damaged fence remains damaged.
- The in-line marker posts were closely spaced making the boundary highly visible and easy to follow. Torx decking screw type fasteners were used to attach the conservation easement signs to the treated posts. All of the signs were firmly attached to the posts and none of the fasteners have failed.

Action Items

- Re-set the loose post near platted corner #24.
- Remove trash and other materials located within the easement.
- Repair damaged fence.

Let me know if you have any questions or need additional information.

Sincerely, Kelly Phillips Property Specialist NCDEQ-DMS 610 East Center Avenue, Suite 301 Mooresville, NC 28115 Cell: (919) 723-7565

cc: R:\EEP PROJECT LIBRARY FILES\PROJECT DELIVERABLES(REPORTS)\FD PROJECTS\Cedar Branch (#97009)\2.Conservation Easement\DMS Easement Inspections\MY6

North Carolina Department of Environmental Quality | Division of Mitigation Services 217 West Jones Street | 1652 Mail Service Center | Raleigh, North Carolina 27699-1652 919.707.8976